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Abstract
A model is developed to describe state reduction in an EPR experiment
as a continuous, relativistically invariant, dynamical process. The system
under consideration consists of two entangled isospin particles each of
which undergoes isospin measurements at spacelike separated locations. The
equations of motion take the form of stochastic differential equations. These
equations are solved explicitly in terms of random variables with a priori known
probability distribution in the physical probability measure. In the course of
solving these equations a correspondence is made between the state reduction
process and the problem of classical nonlinear filtering. It is shown that the
solution is covariant, violates Bell inequalities and does not permit superluminal
signalling. It is demonstrated that the model is not governed by the free will
theorem and it is argued that the claims of Conway and Kochen, that there can
be no relativistic theory providing a mechanism for state reduction, are false.

PACS numbers: 03.65.Ta, 03.65.Ud, 02.50.Ey, 02.50.Cw

1. Introduction

The motivation for attempting to formulate a dynamical description of state reduction [1–6]
stems from the inherent problems of quantum measurement. In standard quantum theory,
the state reduction postulate is a necessary supplement to the Schrödinger dynamics in order
that we can realize definite measurement outcomes from the potentiality of the initial state
vector. The problem with this picture is that the pragmatic application of these two different
laws of evolution is left to the judgment of the physicist rather than being fixed by exact
mathematical formulation. Our experience in the use of quantum theory tells us that the
state reduction postulate should not be applied to a microscopic system consisting of a few
elementary particles until it interacts with a macroscopic object such as a measuring device.
This works perfectly well in practice for current experimental technologies, but as we begin
to explore systems on intermediate scales it is not clear whether state reduction should be
assumed or not. A solution of the problem of measurement thus requires that we somehow set
a fundamental scale to demarcate micro and macro effects within the dynamical framework.
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The formulation of an empirical model, objectively describing the dynamics of the state
reduction process is a direct approach to achieving this aim. The basic requirements we have
for such a model can be characterized as follows [7, 8]:

• Measurements involving macroscopic instruments should have definite outcomes.

• The statistical connections between measurement outcomes and the state vector prior to
measurement should be preserved.

• The model should be consistent with known experimental results.

The task of meeting these objectives in a relativistic context has met with technical difficulties
related to renormalization [9–16]. These issues derive from the quantum field theoretic nature
of relativistic systems. In this paper, we will attempt to sidestep this problem by considering
a simplified quantum system with a finite-dimensional Hilbert space free from the problem of
divergences. Our aim is to elucidate the dynamical process of state reduction in a relativistic
context.

We will consider a model describing the famous experiment devised by Einstein, Podolski
and Rosen (EPR) [17]. The experiment involves two elementary particles in an entangled state
and separated by a spacelike interval. The original purpose of EPR was to argue that quantum
mechanics is fundamentally incomplete as a theory. In order to do this they made a locality
assumption stating that the two particles are not able to instantaneously influence each other
at a distance. Theoretical and experimental advances [18, 19] have since demonstrated the
remarkable conclusion that the assumption of locality is incorrect. Entangled quantum systems
can indeed transmit instantaneous influence at a distance when a measurement is performed.
Although this fact negates the EPR argument, instead it poses questions for our understanding
of quantum measurement. In particular, the notion of instantaneous influence due to state
reduction during measurement seems to sit uncomfortably with the theory of relativity.

A formal relativistically covariant description of the state reduction associated with
measurement has been given by Aharanov and Albert [20]. They show that for a consistent
description of the measurement process, the state evolution cannot take the form of a function
on spacetime. The proposed solution is that state evolution should be described by a functional
on the set of spacelike hypersurfaces as conceived by Tomonaga and Schwinger. This sets the
scene for understanding how to formulate a fully dynamical and relativistic description of the
state reduction process.

Relativistic dynamical reduction models have been critically investigated from the
perspective of the analysis of Aharanov and Albert by Ghirardi [21]. There, the conceptual
features of these models are discussed and shown to lead to a coherent picture. It is the
intention of this work to extend the analysis of Ghirardi by constructing an explicit model of
continuous state evolution. Our model, which is described in detail in section 2, is designed to
highlight the peculiar nonlocal features. In sections 3 and 4, we derive closed-form solutions
to the stochastic equations of motion. The value of this is that it enables us to examine the
nonlocal character of the stochastic noise processes. In section 5, we apply the method of
Brody and Hughston [22, 23] to demonstrate that the equations describing the dynamical
state reduction can be viewed as a description of a classical filtering problem. In section 6,
we generalize our model to consider an experiment where the experimenter can freely choose
which measurement to perform on the individual particle from an incompatible set of possible
measurements. This leads us to a discussion of the so-called free will theorem [24–28] of
Conway and Kochen in section 7. We use our findings to argue that the axiomatic assumptions
of the free will theorem are too restrictive and that the conclusions of the theorem cannot be
applied to dynamical models of state reduction.
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Figure 1. The diagram represents an experiment to measure the states of two entangled particles.
The dashed lines are the (classical) particle trajectories where particle 1 moves to the left and
particle 2 moves to the right. The vertical represents a timelike direction, whilst the horizontal
represents a spacelike direction. We suppose that within the spacetime region R1, a measurement is
performed on particle 1. Similarly within the spacetime region R2 (spacelike separated from R1),
a measurement is performed on particle 2. The initial state is defined on the spacelike hypersurface
σi . The state advances as described by the Tomonaga picture through a sequence of spacelike
surfaces defining a foliation of spacetime.

2. The model

We consider two particles denoted as 1 and 2, each described by an internal isospin- 1
2 degree

of freedom. The choice of an isospin system avoids complication encountered when dealing
with conventional spin in a covariant formulation. The initial isospin state of the two particles
is defined in spacetime on an initial spacelike hypersurface σi as the isospin singlet state

|ψ(σi)〉 = 1√
2

{∣∣ + 1
2 ;− 1

2

〉 − ∣∣ − 1
2 ; + 1

2

〉}
. (1)

The isospin states for each particle are represented with respect to a fixed axis in isospin space.
The particle trajectories in spacetime are assumed to behave classically. The two particles

move in separate directions away from some specific location where they have been prepared.
Each particle path eventually intersects with the path of an isospin measuring device. This
leads to a localized interaction which we assume takes place in some finite region of spacetime.
We assume that the classical trajectories of the particles and measuring devices, and the finite
regions of interaction are determined. Further we assume that the two measurement regions
are completely spacelike separated in the sense that every point in each region is spacelike
separated from every point in the other region. We denote the two measurement regions by
R1 and R2 (see figure 1).

In order to describe the state evolution we use the Tomonaga picture [29, 30]. Standard
unitary dynamics are described in this picture by the Tomonaga equation,

δ|ψ(σ)〉
δσ (x)

= −iHint(x)|ψ(σ)〉, (2)

where Hint is the interaction Hamiltonian. Given two spacelike hypersurfaces σ and σ ′ differing
only by some small spacetime volume �ω about some spacetime point x, the functional
derivative is defined by

δ|ψ(σ)〉
δσ (x)

= lim
σ ′→σ

|ψ(σ ′)〉 − |ψ(σ)〉
�ω

. (3)
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Figure 2. The diagram represents a sequence of spacelike hypersurfaces advancing through the
spacetime region Ra . The grey shading within Ra corresponds to the spacetime volume ωa

σ .
The detail shows a small spacetime region within Ra where the surface σ advances through a
spacetime cell at point x. Associated with the cell at point x is the incremental spacetime volume
dω and the incremental Brownian variable dξa

x .

The operator Hint must be a scalar in order that equation (2) has Lorentz invariant form. We
must also have [Hint(x),Hint(x

′)] = 0 for spacelike separated x and x ′ reflecting the fact that
there is no temporal ordering between spacelike separated points.

In differential form, equation (2) can be written as

dx |ψ(σ)〉 = −iHint(x) dω|ψ(σ)〉, (4)

where dx |ψ(σ)〉 represents the infinitesimally small change in the state as the hypersurface σ

is deformed in a timelike direction at point x.
We specify a probability space (�,F, Q) along with a filtration F ξ

σ of F generated by
a two-dimensional Q-Brownian motion

{
ξ 1
σ , ξ 2

σ

}
. For each interaction region Ra (a = 1, 2)

the spacelike hypersurfaces {σ } characterize the time evolution for each component of the
Brownian motion. Given a foliation of spacetime, we define a ‘time difference’ between
any two surfaces as the spacetime volume enclosed by the surfaces within the region Ra .
Consider the set (σi, σ ) of all spacetime points between the two spacelike surfaces σi and σ ,
and consider the intersection of this set with the interaction region (σi, σ ) ∩ Ra . We denote
the spacetime volume of (σi, σ ) ∩ Ra by ωa

σ (see the grey shaded region in figure 2). The
two volumes ω1

σ and ω2
σ correspond to two different time parameters for the two-component

Brownian motions. This definition ensures that time increases monotonically as the future
surface σ advances. The parameterization is covariant and has the convenience of only being
relevant during the predefined measurement events. We define an infinitesimal increment of
the Brownian motion dξa

x (relating to two spacelike hypersurfaces which differ only by an
infinitesimal spacetime volume dω at point x) by the following:

dξa
x = 0, for x /∈ Ra,

EQ
[
dξa

x

∣∣F ξ
σ

] = 0, for x to the future of σ ,

dξa
x dξb

y = δabδxy dω, for x ∈ Ra, y ∈ Rb,

(5)

where EQ
[ ·∣∣F ξ

σ

]
denotes conditional expectation in Q. We attribute dξa

x to the spacetime point
x independent of any spacelike surface on which x may lie. The two-dimensional Brownian
motion is given by the sum of all infinitesimal Brownian increments belonging to the set of
points (σi, σ ) ∩ Ra ,

ξa
σ =

∫ σ

σi

dξa
x , (6)
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so that an increment of the process can be written as

ξa
σ ′ − ξa

σ =
∫ σ ′

σ

dξa
x , (7)

where σ ′ is to the future of σ . These increments are independent and have mean zero and
variance ωa

σ ′ − ωa
σ as can easily be demonstrated by comparison with the conventional time

parameterization of Brownian motion.
The state reduction process which occurs as the isospin state is measured can now be

described by extension of the Tomonaga equation (4) to include a stochastic term. We define
our evolution by

dx |ψ(σ)〉 = {
2λS1 dξ 1

x − 1
2λ2dω

} |ψ(σ)〉 for x ∈ R1,

dx |ψ(σ)〉 = {
2λS2 dξ 2

x − 1
2λ2dω

} |ψ(σ)〉 for x ∈ R2,

dx |ψ(σ)〉 = 0 otherwise. (8)

The operators Sa are isospin operators for each particle with the properties

S1

∣∣ ± 1
2 ; ·〉 = ± 1

2

∣∣ ± 1
2 ; ·〉, S2

∣∣·; ± 1
2

〉 = ± 1
2

∣∣·; ± 1
2

〉
, (9)

the parameter λ is a coupling parameter. The model explicitly describes an experiment to
measure the isospin state of each particle in the given fixed isospin direction (the case of a
general isospin measurement direction will be considered below). The form of equations (8)
can be roughly understood by considering an incremental stage in the evolution where dξa

σ

is either positive or negative. For example, if dξ 1
σ is positive then the stochastic term on the

right-hand side of the first equation in (8) will augment the + 1
2 state for particle 1 whilst

degrading the − 1
2 state for particle 1. The opposite happens if dξ 1

σ is negative. Eventually
after a certain period of evolution one of the two eigenstates will dominate. This is analogous
to the famous problem of the gambler’s ruin.

The drift terms on the right-hand side of equations (8) ensure that the state norm is a
positive martingale

dx〈ψ(σ)|ψ(σ)〉 = 4λ〈ψ(σ)|S1|ψ(σ)〉dξ 1
x for x ∈ R1,

dx〈ψ(σ)|ψ(σ)〉 = 4λ〈ψ(σ)|S2|ψ(σ)〉dξ 2
x for x ∈ R2. (10)

We can then define a physical measure P equivalent to Q according to

EP
[ · ∣∣F ξ

σ

] = EQ
[〈ψ(σf )|ψ(σf )〉 · ∣∣F ξ

σ

]
EQ

[〈ψ(σf )|ψ(σf )〉∣∣F ξ
σ

] = EQ
[〈ψ(σf )|ψ(σf )〉 · |F ξ

σ

]
〈ψ(σ)|ψ(σ)〉 , (11)

with σf being the final surface of the state evolution we are considering. This change of
measure ensures that physical outcomes are weighted according to the Born rule, meeting the
second bullet-pointed criterion for dynamical state reduction stated in the introduction. Note
that the processes ξa

σ satisfy a modified distribution under the P-measure.
Our model can be interpreted as an effective model describing the interaction of the two

particles with macroscopic measuring devices in regions R1 and R2. In more detail, we would
expect the particle states to become correlated with different states of the measuring devices.
The state reduction dynamics would be expected to have a negligible effect on the individual
spin particles, however, the effect would be rapid for a macroscopic superposition of measuring
device states. Collapse of the spin particle would then occur indirectly as a result of collapse
of the macro state. In our model, we have assumed that the particle states undergo a direct
collapse dynamics. This allows us to ignore the fine details of the interaction between spin
particles and measuring devices.
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By designating spacetime regions where collapse of the isospin state occurs we avoid the
issue of setting a scale distinguishing micro and macro behaviour. Our main interest here is
to understand the dynamical process of state reduction for an entangled quantum system in a
relativistic setting.

3. Solution in terms of Q-Brownian motion

Working in the Q-measure where ξa
σ is a Brownian process we find the following solution for

the unnormalized state evolution:

|ψ(σ)〉 = 1√
2

{
eλξ 1

σ −λ2ω1
σ e−λξ 2

σ −λ2ω2
σ

∣∣ + 1
2 ;− 1

2

〉 − e−λξ 1
σ −λ2ω1

σ eλξ 2
σ −λ2ω2

σ

∣∣− 1
2 ; + 1

2

〉}
. (12)

This can easily be checked with the use of (5), (6) and (8). The state norm is given by

〈ψ(σ)|ψ(σ)〉 = 1
2

{
e2λξ 1

σ −2λ2ω1
σ e−2λξ 2

σ −2λ2ω2
σ + e−2λξ 1

σ −2λ2ω1
σ e2λξ 2

σ −2λ2ω2
σ

}
. (13)

We note that although equation (12) is a solution to (8), it cannot be considered as a solution
to the model since it completely disregards the important role played by the physical measure
P. Equation (12) enables us to generate sample outcomes, however, the physical probability
density at a given outcome can only be determined afterwards with reference to the state norm
(a likely outcome in Q may be highly unlikely in P).

We define the characteristic function associated with ξ 1
σ and ξ 2

σ in the P-measure as


ξ
σ (t1, t2) = EP

[
eit1ξ 1

σ eit2ξ 2
σ

∣∣F ξ
σi

]
(14)

= EQ
[〈ψ(σ)|ψ(σ)〉eit1ξ 1

σ eit2ξ 2
σ

∣∣F ξ
σi

]
, (15)

where we have used equation (11) and the fact that the initial state has unit norm. Noting
that ξ 1

σ and ξ 2
σ are independent in the Q-measure we can determine the expectation using

equation (13) to find


ξ
σ (t1, t2) = 1

2

{
e2iλt1ω

1
σ − 1

2 t2
1 ω1

σ e−2iλt2ω
2
σ − 1

2 t2
2 ω2

σ + e−2iλt1ω
1
σ − 1

2 t2
1 ω1

σ e2iλt2ω
2
σ − 1

2 t2
2 ω2

σ

}
. (16)

The characteristic function allows us to immediately demonstrate that spacelike separated
processes ξ 1

σ and ξ 2
σ are correlated under the physical measure P:

EP
[
ξ a
σ

∣∣F ξ
σi

] = −i
d

dta

[

ξ

σ (t1, t2)
]∣∣

t1=t2=0 = 0,

EP
[
ξ 1
σ ξ 2

σ

∣∣F ξ
σi

] = − d2

dt1 dt2

[

ξ

σ (t1, t2)
]∣∣

t1=t2=0 = −4λ2ω1
σω2

σ . (17)

The stochastic information at one wing of the apparatus is not independent of the stochastic
information at the other wing. We might expect this since the results of the two measurements
that the information dictate are correlated.

Before demonstrating the state reducing properties of this model, we first show in the
following section how to express the solution (12) directly in terms of a P-Brownian motion.
This will allow us to generate physical sample solutions.

4. Solution in terms of P-Brownian motion

Let the probability space (�,F, P) be given and let Gσ be a filtration of F such that
independent P-Brownian motions Ba

σ (a = 1, 2) are specified together with random variables
sa (independent of Ba

σ ). The Brownian motions Ba
σ are defined under the P-measure in the

6
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same way in which Brownian motions ξa
σ are defined under Q-measure by equations (5) and

(6). The probability distribution for the random variables sa are given by

P
(
s1 = + 1

2 , s2 = − 1
2

) = 1
2 , P

(
s1 = − 1

2 , s2 = + 1
2

) = 1
2 . (18)

We assume that sa are Gσi
-measurable.

Now define the random processes (cf [23])

ξ 1
σ = 4λs1ω

1
σ + B1

σ , ξ 2
σ = 4λs2ω

2
σ + B2

σ . (19)

Our aim is to show that these processes, defined under the P-measure, can be identified as the
Q-Brownian processes ξ a

σ involved in the equations of motion for the state (8). In order to do
this we must show that their characteristic function under the P-measure is identical to that
found for the Q-Brownian processes, as given by equation (15).

Again let F ξ
σ denote the filtration generated by

{
ξ 1
σ , ξ 2

σ

}
. The use of F ξ

σ ensures that we
have no more or less information than is given by the processes

{
ξ 1
σ , ξ 2

σ

}
as in the original

presentation of the model in section 2. Neither sa nor Ba
σ are F ξ

σ -measurable. The only
information we have regarding the realization of these variables is

{
ξ 1
σ , ξ 2

σ

}
.

The characteristic function for ξ 1
σ and ξ 2

σ is given by equation (14),


ξ
σ (t1, t2) = EP

[
eit1ξ 1

σ eit2ξ 2
σ

∣∣F ξ
σi

]
,

but now we write


ξ
σ (t1, t2) = 1

2 EP
[
eit1(4λs1ω

1
σ +B1

σ ) eit2(4λs2ω
2
σ +B2

σ )
∣∣F ξ

σi
; s1 = + 1

2 , s2 = − 1
2

]
+ 1

2 EP
[
eit1(4λs1ω

1
σ +B1

σ ) eit2(4λs2ω
2
σ +B2

σ )
∣∣F ξ

σi
; s1 = − 1

2 , s2 = + 1
2

]
. (20)

Noting that B1
σ and B2

σ are independent we can work directly in the P-measure to confirm that
the characteristic function is once more given by equation (16). This demonstrates that the
processes defined by equation (19) can indeed be identified as Q-Brownian motions ξ a

σ .
We are now in a position to express the solution to equations (8) and (11) in terms of the

P-Brownian motions Ba
σ , and the random variables sa . This is summarized in the following

subsection. The fact that the solution is expressed in terms of variables with an a priori known
probability distribution in the physical measure is to be contrasted with the solution in terms
of Q-Brownian motion where physical probabilities can only be determined a posteriori with
knowledge of the state norm.

4.1. Summary of solution

The solution to the equations of motion (8) is given by the unnormalized state

|ψ(σ)〉 = 1√
2

{
eλξ 1

σ −λ2ω1
σ e−λξ 2

σ −λ2ω2
σ

∣∣ + 1
2 ;− 1

2

〉 − e−λξ 1
σ −λ2ω1

σ eλξ 2
σ −λ2ω2

σ

∣∣− 1
2 ; + 1

2

〉}
. (21)

(This is the same solution in terms of ξ a
σ as presented in equation (12), however, we now treat

ξ a
σ , not as a Q-Brownian motion, but as an information process defined in terms of variables

with known P-distributions.) The random variables ξ a
σ are given by

ξ 1
σ = 4λs1ω

1
σ + B1

σ , ξ 2
σ = 4λs2ω

2
σ + B2

σ . (22)

The stochastic processes B1
σ and B2

σ are independent P-Brownian motions. The random
variables sa take values s1 = +1/2, s2 = −1/2 with probability 1/2 and s1 = −1/2, s2 = +1/2
with probability 1/2. Brownian motions Ba

σ and random variables sa are independent. Only
the processes ξ a

σ are measurable.
This solution is as relativistically invariant as a description of state reduction can be. We

expect the state to depend on the spacelike surface σ we choose to query. The dependence on

7
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σ results in equation (21) from the spacetime volume variables ωa
σ and the random variables

Ba
σ . We note that neither of these variables depends on the chosen foliation of spacetime.

For example, the distribution of Ba
σ is characterized by the spacetime volume ωa

σ which in
turn is determined only by the surface σ . A foliation dependence would be undesirable as it
would indicate a preferred frame in the model. The fact that there is no foliation dependence
indicates also that the choice σ has no prior physical significance.

4.2. State reduction

In this subsection, we explicitly demonstrate how the solution outlined above exhibits state
reduction to a state of well-defined isospin. Consider the isospin operators Sa . The conditional
expectation of Sa for the state |ψ(σ)〉 is given by

〈Sa〉σ = 〈ψ(σ)|Sa|ψ(σ)〉
〈ψ(σ)|ψ(σ)〉 . (23)

From equation (21) we find choosing, for example, a = 1,

〈S1〉σ =
1
2 e2λξ 1

σ −2λ2ω1
σ e−2λξ 2

σ −2λ2ω2
σ − 1

2 e−2λξ 1
σ −2λ2ω1

σ e2λξ 2
σ −2λ2ω2

σ

e2λξ 1
σ −2λ2ω1

σ e−2λξ 2
σ −2λ2ω2

σ + e−2λξ 1
σ −2λ2ω1

σ e2λξ 2
σ −2λ2ω2

σ

. (24)

Now suppose we condition on the event s1 = +1/2, s2 = −1/2. We find

〈S1〉σ =
1
2 e2λB1

σ +2λ2ω1
σ e−2λB2

σ +2λ2ω2
σ − 1

2 e−2λB1
σ −6λ2ω1

σ e2λB2
σ −6λ2ω2

σ

e2λB1
σ +2λ2ω1

σ e−2λB2
σ +2λ2ω2

σ + e−2λB1
σ −6λ2ω1

σ e2λB2
σ −6λ2ω2

σ

=
1
2 − 1

2 e−4λB1
σ −8λ2ω1

σ e4λB2
σ −8λ2ω2

σ

1 + e−4λB1
σ −8λ2ω1

σ e4λB2
σ −8λ2ω2

σ

. (25)

Next we use the result that

lim
ωσ →∞ P

(
e±4λBσ −8λ2ωσ > 0

) = 0, (26)

to deduce that 〈S1〉σ → 1/2 as ω1
σ → ∞ or ω2

σ → ∞. These volumes increase in size as
the surface σ passes the spacetime regions R1 and R2, respectively. Since these regions are of
finite size, ω1

σ and ω1
σ can only attain fixed maximal values. We assume that these maximal

values are sufficiently large that the limit of equation (26) is approached with high precision.
Note that the rate at which this limit is approached can be controlled by the choice of coupling
parameter λ.

A similar analysis leads to the conclusion that 〈S2〉σ → −1/2. Conversely, if we
were to condition on the event s1 = −1/2, s2 = +1/2, we would find 〈S1〉σ → −1/2 and
〈S2〉σ → 1/2. We observe that the unmeasurable random variable sa dictates the outcome of
the experiment. Only the processes ξa

σ are known to the state; the Brownian processes Ba
σ act

as noise terms obscuring the values sa .

4.3. Probabilities for reduction

Here we demonstrate that the stochastic probabilities for outcomes are those predicted by the
quantum state prior to the measurement event. For example, we define the + 1

2 state projection
operator on particle 1 by

P +
1

∣∣ + 1
2 ; ·〉 = ∣∣ + 1

2 ; ·〉; P +
1

∣∣ − 1
2 ; ·〉 = 0, (27)

and the conditional expectation of this operator for the state |ψ(σ)〉 by〈
P +

1

〉
σ

= 〈ψ(σ)|P +
1 |ψ(σ)〉

〈ψ(σ)|ψ(σ)〉 . (28)

8
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In order to calculate the unconditional expectation of
〈
P +

1

〉
σ

it turns out to be simpler to work
in the Q-measure. We proceed as follows:

EP
[〈
P +

1

〉
σ

∣∣F ξ
σi

] = EQ
[〈ψ(σ)|ψ(σ)〉〈P +

1

〉
σ

∣∣F ξ
σi

]
= EQ

[〈ψ(σ)|P +
1 |ψ(σ)〉∣∣F ξ

σi

]
= EQ

[
1
2 e2λξ 1

σ −2λ2ω1
σ e−2λξ 2

σ −2λ2ω2
σ

∣∣F ξ
σi

] = 1
2 . (29)

From the previous subsection, we know that as ωa
σ → ∞ then the state of each particle tends

towards a definite isospin state and consequently the conditional expectation of P +
1 tends to

either 0 or 1. This means that as ωa
σ → ∞ we have

EP
[〈
P +

1

〉
σ

∣∣F ξ
σi

] = EP
[
11{

〈S1〉σ = 1
2

}∣∣F ξ
σi

] = P
(〈
S1

〉
σ

= 1
2

∣∣F ξ
σi

)
, (30)

where 11{E} takes the value 1 if the event E is true, and 0 otherwise. From equation (29) we
can now write

P
(〈S1〉σ = 1

2

∣∣F ξ
σi

) = 1
2 = 〈

P +
1

〉
σi
. (31)

This tells us that as the dynamics lead to a definite state for each particle then the stochastic
probability of a given outcome matches the initial quantum probability. The same is true of
other projection operators as can easily be shown.

5. Interpretation in terms of nonlinear filtering

In this section, we use the method of Brody and Hughston [22, 23] to demonstrate that the
problem under consideration can be interpreted as a classical nonlinear filtering problem. The
method was originally applied to solve an energy-based state diffusion equation.

From section 4.2 we understand that the F ξ
σ -unmeasurable random variables sa represent

the true outcomes for the isospin eigenvalues of each particle after the measurement process.
Only information in the form ξa

σ = 4λsaω
a
σ + Ba

σ is accessible to the state where the realized
value of sa is masked by the F ξ

σ -unmeasurable noise processes Ba
σ .

Suppose we attempt to address the problem of finding sa directly, that is, given
{
ξa
σ

}
what

is the best estimate we can make for sa . This is a classical nonlinear filtering problem. It is
straightforward to show that the best estimate for the value of sa is given by the conditional
expectation

ŝaσ = EP
[
sa

∣∣F ξ
σ

]
. (32)

The aim is now to identify ŝaσ with the quantum expectation processes 〈Sa〉σ .
We first show that ξ a

σ are Markov processes. To do this we show that

P
(
ξ a
σ < y

∣∣ ξ 1
σ1

, ξ 1
σ2

, . . . , ξ 1
σk

; ξ 2
σ1

, ξ 2
σ2

, . . . , ξ 2
σk

) = P
(
ξ a
σ < y

∣∣ ξ 1
σ1

; ξ 2
σ1

)
, (33)

where {σ, σ1, σ2, . . . , σk} is a sequence of spacelike surfaces belonging to some spacetime
foliation such that

ω1
σ � ω1

σ1
� ω1

σ2
� · · · � ω1

σk
> 0, ω2

σ � ω2
σ1

� ω2
σ2

� · · · � ω2
σk

> 0. (34)

The proof of equation (33) is more or less identical to that given by Brody and Hughston
[22]. We use the fact that EP

[
Bb

σ ′B
b
σ ′′

] = ωb
σ ′ , where ωb

σ ′′ � ωb
σ ′ for b = 1, 2. Then for

ωb
σ � ωb

σ1
� ωb

σ2
> 0 we have that

Bb
σ and

Bb
σ1

ωb
σ1

− Bb
σ2

ωb
σ2

are independent. (35)

9
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Furthermore,

Bb
σ1

ωb
σ1

− Bb
σ2

ωb
σ2

= ξ b
σ1

ωb
σ1

− ξ b
σ2

ωb
σ2

, (36)

from which it follows that

P
(
ξ a
σ < y

∣∣ ξ 1
σ1

, ξ 1
σ2

, ξ 1
σ3

, . . . ; ξ 2
σ1

, ξ 2
σ2

, ξ 2
σ3

, . . .
)

= P

(
ξ a
σ < y

∣∣∣∣∣ξ 1
σ1

,
ξ 1
σ1

ω1
σ1

− ξ 1
σ2

ω1
σ2

,
ξ 1
σ2

ω1
σ2

− ξ 1
σ3

ω1
σ3

, . . . ; ξ 2
σ1

,
ξ 2
σ1

ω2
σ1

− ξ 2
σ2

ω2
σ2

,
ξ 2
σ2

ω2
σ2

− ξ 2
σ3

ω2
σ3

, . . .

)

= P

(
ξ a
σ < y

∣∣∣∣∣ξ 1
σ1

,
B1

σ1

ω1
σ1

− B1
σ2

ω1
σ2

,
B1

σ2

ω1
σ2

− B1
σ3

ω1
σ3

, . . . ; ξ 2
σ1

,
B2

σ1

ω2
σ1

− B2
σ2

ω2
σ2

,
B2

σ2

ω2
σ2

− B2
σ3

ω2
σ3

, . . .

)
.

(37)

Now from (35) we have that ξ a
σ , ξ 1

σ1
and ξ 2

σ1
are each independent of B1

σ1

/
ω1

σ1
− B1

σ2

/
ω1

σ2
,

B1
σ2

/
ω1

σ2
− B1

σ3

/
ω1

σ3
, etc. Equation (33) follows. The same argument shows that

P
(
Ba

σ < y
∣∣ ξ 1

σ1
, ξ 1

σ2
, . . . , ξ 1

σk
; ξ 2

σ1
, ξ 2

σ2
, . . . , ξ 2

σk

) = P
(
Ba

σ < y
∣∣ ξ 1

σ1
; ξ 2

σ1

)
, (38)

and therefore

P
(
sa = ± 1

2

∣∣F ξ
σ

) = P
(
sa = ± 1

2

∣∣ ξ 1
σ ; ξ 2

σ

)
. (39)

Next we use a version of Bayes formula to calculate this conditional probability

P
(
s1 = ± 1

2 , s2 = ∓ 1
2

∣∣ ξ 1
σ ; ξ 2

σ

) = P
(
s1 = ± 1

2 , s2 = ∓ 1
2

)
ρ

(
ξ 1
σ ; ξ 2

σ

∣∣ s1 = ± 1
2 , s2 = ∓ 1

2

)
ρ

(
ξ 1
σ ; ξ 2

σ

) .

(40)

The density function for the random variables
(
ξ 1
σ ; ξ 2

σ

)
conditional on sa is Gaussian (since

Ba
σ is a Brownian motion under P) and is given by

ρ
(
ξ 1
σ ; ξ 2

σ

∣∣ s1 = ± 1
2 , s2 = ∓ 1

2

) ∝ e
− 1

2ω1
σ
(ξ 1

σ ∓2λω1
σ )

2

e
− 1

2ω2
σ
(ξ 2

σ ±2λω2
σ )

2

. (41)

We also have that

ρ
(
ξ 1
σ ; ξ 2

σ

) = 1
2ρ

(
ξ 1
σ , ξ 2

σ

∣∣ s1 = + 1
2 , s2 = − 1

2

)
+ 1

2ρ
(
ξ 1
σ , ξ 2

σ

∣∣ s1 = − 1
2 , s2 = + 1

2

)
. (42)

We are now in a position to calculate the conditional expectation ŝaσ given by equation (32).
For example, choosing a = 1 we have

ŝ1σ = EP
[
s1

∣∣F ξ
σ

] = 1
2 P

(
s1 = + 1

2 , s2 = − 1
2

∣∣ ξ 1
σ ; ξ 2

σ

) − 1
2 P

(
s1 = − 1

2 , s2 = + 1
2

∣∣ ξ 1
σ ; ξ 2

σ

)
=

1
2 e2λξ 1

σ e−2λξ 2
σ − 1

2 e−2λξ 1
σ e2λξ 2

σ

e2λξ 1
σ e−2λξ 2

σ + e−2λξ 1
σ e2λξ 2

σ

. (43)

This is the same expression as that given for 〈S1〉σ in equation (24). This demonstrates that
the conditional expectation ŝ1σ , which represents our best estimate for the random variable s1

given only information from the filtration F ξ
σ , corresponds to the quantum expectation of the

operator S1, conditional on the same information. It is remarkable that the complexity of the
stochastic quantum formalism corresponds to such a conceptually intuitive classical analogue.

10
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Figure 3. A Bell test experiment for two entangled isospin particles. The dashed lines are the
(classical) particle trajectories where particle 1 moves initially to the left and particle 2 moves
initially to the right. The vertical represents a timelike direction, whilst the horizontal represents a
spacelike direction. At D1 a device is used to deflect particle 1 towards one of several measuring
devices each set up to perform an isospin measurement for a different orientation in isospin space.
Spacetime regions Ru1 , Rv1 , . . . , Rw1 are the different interaction regions corresponding to the
different isospin orientations u1, v1, . . . , w1. Similarly for particle 2. The state advances through
a sequence of spacelike surfaces (bold lines) defining a foliation of spacetime. The example
foliation shows particle 1 measured before particle 2.

6. Bell test experiments

We now suppose that the experimenters at each wing of the apparatus can choose the orientation
of their isospin measurement in isospin space. We suppose that each wing of the experiment
now consists of several measuring devices each set up to measure the isospin value for different
isospin orientations (see figure 3). Each particle passes through a deflection device, sending it
towards any one of these isospin measuring devices. The deflection device can be controlled
by the experimenter and each experimenter makes their choice of which isospin orientation to
measure independently of the other. Furthermore, the deflection and measuring devices on one
wing of the experiment are completely spacelike separated from the deflection and measuring
devices on the other wing. This is essentially the experimental design used by Aspect in his
tests of Bell inequalities [19].

We can represent the initial singlet state in terms of isospin eigenstates in a basis defined
by the arbitrarily chosen measurement directions. Suppose that the chosen measurement
directions correspond to the unit isospin vectors n1 and n2 and that the angle between n1 and
n2 is θ , then

|ψ(σi)〉 = 1√
2

{
cos

(
θ
2

) ∣∣+ 1
2

〉
n1

∣∣− 1
2

〉
n2

− i sin
(

θ
2

) ∣∣+ 1
2

〉
n1

∣∣+ 1
2

〉
n2

+ i sin
(

θ
2

) ∣∣− 1
2

〉
n1

∣∣− 1
2

〉
n2

− cos
(

θ
2

) ∣∣− 1
2

〉
n1

∣∣+ 1
2

〉
n2

}
, (44)

where, for isospin vector operators Sa , the orthonormal eigenstates satisfy

na · Sa

∣∣+ 1
2

〉
na

= 1
2

∣∣+ 1
2

〉
na

; na · Sa

∣∣− 1
2

〉
na

= − 1
2

∣∣− 1
2

〉
na

. (45)

We denote the spacetime locations of the deflection devices as Da and the particle–measuring
device interaction regions as Rua

, Rva
, . . . , Rwa

for the different measurement directions

11
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ua, va, . . . , wa (see figure 3). For each a, a choice of measurement direction na is made
and only one interaction region Rna

is activated. Given n1 and n2, the equations of motion for
the state are now

dx |ψ(σ)〉 = {
2λn1 · S1 dξ 1

x − 1
2λ2dω

}|ψ(σ)〉 for x ∈ Rn1 ,

dx |ψ(σ)〉 = {
2λn2 · S2 dξ 2

x − 1
2λ2dω

}|ψ(σ)〉 for x ∈ Rn2 ,

dx |ψ(σ)〉 = 0 otherwise, (46)

where the stochastic increments have the generalized properties

dξa
x = 0, for x /∈ Rna

,

EQ
[
dξa

x

∣∣F ξ
σ

] = 0, for x to the future of σ ,

dξa
x dξb

y = δabδxy dω, for x ∈ Rna
, y ∈ Rnb

.

(47)

These equations describe state reduction onto isospin eigenstates defined with respect to the n1

and n2 directions. Again we consider these equations as effective descriptions of the particle
behaviour resulting from interactions with macroscopic measuring devices.

The solution to (46) for an initial isospin singlet state is found to be

|ψ(σ)〉 = 1√
2

{
cos

(
θ
2

)
eλξ 1

σ −λ2ω1
σ e−λξ 2

σ −λ2ω2
σ

∣∣+ 1
2

〉
n1

∣∣− 1
2

〉
n2

− i sin
(

θ
2

)
eλξ 1

σ −λ2ω1
σ eλξ 2

σ −λ2ω2
σ

∣∣+ 1
2

〉
n1

∣∣+ 1
2

〉
n2

+ i sin
(

θ
2

)
e−λξ 1

σ −λ2ω1
σ e−λξ 2

σ −λ2ω2
σ

∣∣− 1
2

〉
n1

∣∣− 1
2

〉
n2

− cos
(

θ
2

)
e−λξ 1

σ −λ2ω1
σ eλξ 2

σ −λ2ω2
σ

∣∣− 1
2

〉
n1

∣∣+ 1
2

〉
n2

}
. (48)

As demonstrated in sections 3 and 4 it is straightforward to show that the characteristic function
associated with the Q-Brownian processes ξ 1

σ and ξ 2
σ (equation (14)) can be reproduced directly

in the P-measure if we define

ξ 1
σ = 4λs1ω

1
σ + B1

σ , ξ 2
σ = 4λs2ω

2
σ + B2

σ , (49)

where Ba
σ are P-Brownian motions and the random variables sa now have the joint conditional

probability distribution

P
(
s1 = + 1

2 , s2 = − 1
2

∣∣ n1, n2
) = 1

2 cos2
(

θ
2

)
,

P
(
s1 = + 1

2 , s2 = + 1
2

∣∣ n1, n2
) = 1

2 sin2
(

θ
2

)
,

P
(
s1 = − 1

2 , s2 = − 1
2

∣∣ n1, n2
) = 1

2 sin2
(

θ
2

)
,

P
(
s1 = − 1

2 , s2 = + 1
2

∣∣ n1, n2
) = 1

2 cos2
(

θ
2

)
.

(50)

We assume a filtration Gσ such that Ba
σ and sa are specified. However, since the probability

distribution for s1 and s2 depends on both experimenters’ choice of measurement directions, we
cannot simply assume that sa are Gσi

-measurable. To understand the structure of the filtration
we can treat the parameters n1 and n2 as random variables which are independent of any other
random variables or processes in the system we are describing. We assume that n1 and n2 are
specified by Gσ in such a way that na is Gσ -measurable if and only if the deflection event for
particle a is to the past of σ . Note that within this filtration, the variable na is associated with
the entire surface σ .

For a given spacetime foliation the isospin measurement on one wing of the apparatus may
be complete before the other experimenter has chosen their direction. Suppose for definiteness
that a given foliation has Rn1 before D2 (see figure 3). In order to realize the process ξ 1

σ say, it
is necessary to realize a definite s1. Since n2 is not Gσ -measurable for spacelike surfaces which

12
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have not crossed D2, it is necessary to show that the marginal distribution of s1 is independent
of n2.

In fact, we have

P
(
s1 = + 1

2

∣∣ n1, n2
) = P

(
s1 = + 1

2 , s2 = − 1
2

∣∣ n1, n2
)

+ P
(
s1 = + 1

2 , s2 = + 1
2

∣∣ n1, n1
)

= 1
2 cos2

(
θ
2

)
+ 1

2 sin2
(

θ
2

)
= 1

2 , (51)

as required, and similarly for other marginal probabilities. This enables us to draw values
of s1 from the correct probability distribution without knowledge of n2 which happens in the
future for the given example foliation. In this case, we require that s1 is Gσ1 -measurable for
some surface σ1 to the past of Rn1 (figure 3).

We can define some other surface σ2 that is to the past of R2 but to the future of σ1 and
both particle deflection events (see figure 3). Since n1, n2 and s1 are all Gσ2 -measurable we
can write, for example,

P
(
s2 = + 1

2

∣∣Gσ2

) = P
(
s2 = + 1

2

∣∣ s1 = + 1
2 ; n1, n2

)
= P

(
s1 = + 1

2 , s2 = + 1
2

∣∣ n1, n2
)

P
(
s1 = + 1

2

∣∣ n1, n2
) = sin2

(
θ
2

)
, (52)

and similarly for other conditional probabilities. This enables us to draw values of s2 from the
correct probability distribution with global knowledge of n1, n2, and s1. We can therefore say
that s2 is Gσ2 -measurable.

For a different foliation where Rn2 precedes D1 we would use the marginal probability
distribution to determine s2 and the conditional distribution to determine s1. In any case the
joint distribution is the same. The order in which s1 and s2 are assigned has no physical
significance. It is simply related to our arbitrary choice of spacetime foliation within the
covariant Tomonaga picture of state evolution. We also stress that the random variables sa

were introduced to facilitate solution of the dynamical equations. They are not part of the
physical model as originally presented. The purpose of the argument presented here is simply
to show that the picture of state evolution is consistent and does not require prior knowledge
of the experimenter’s decisions.

6.1. State reduction

State reduction follows from the solution in the same way as shown in section 4.2. For
example, given n1 and n2 we condition on the event s1 = +1/2, s2 = +1/2. The unnormalized
expectation of the spin operator for particle 1 is found from equation (48) to be

〈ψ(σ)|n1 · S1|ψ(σ)〉 = 1
2 e2λB1

σ +2λ2ω1
σ e2λB2

σ +2λ2ω2
σ

{
cos2

(
θ
2

) (
e−4λB2

σ −8λ2ω2
σ − e−4λB1

σ −8λ2ω1
σ

)
+ sin2

(
θ
2

) (
1 − e−4λB1

σ −8λ2ω1
σ e−4λB2

σ −8λ2ω2
σ

)}
, (53)

and the state norm is

〈ψ(σ)|ψ(σ)〉 = e2λB1
σ +2λ2ω1

σ e2λB2
σ +2λ2ω2

σ

{
cos2

(
θ
2

) (
e−4λB2

σ −8λ2ω2
σ + e−4λB1

σ −8λ2ω1
σ

)
+ sin2 (

θ
2

) (
1 + e−4λB1

σ −8λ2ω1
σ e−4λB2

σ −8λ2ω2
σ

)}
. (54)

Using equation (26) we then find that as ω1
σ → ∞,

〈n1 · S1〉σ = 〈ψ(σ)|n1 · S1|ψ(σ)〉
〈ψ(σ)|ψ(σ)〉 → 1

2 . (55)
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As expected the isospin of particle 1 in the direction n1 tends to the value 1
2 . A similar

calculation shows that 〈n2 · S2〉σ → 1
2 as ω2

σ → ∞, along with similar results for other given
values of sa .

It is also straightforward to show that

lim
ω1

σ ,ω2
σ →∞

〈(n1 · S1)(n2 · S2)〉σ =
{

1
4 with probability sin2

(
θ
2

)
,

− 1
4 with probability cos2

(
θ
2

)
,

(56)

such that

EP
[

lim
ω1

σ ,ω2
σ →∞

〈(n1 · S1)(n2 · S2)〉σ
∣∣F ξ

σi

]
= − 1

4 cos θ = − 1
4 n1 · n2. (57)

This agrees with the result predicted by standard quantum theory and is confirmed by Bell test
experiments.

6.2. Parameter independence

The parameter independence condition states that the probability of a given outcome for an
isospin measurement on one wing of the experiment is independent of the chosen measurement
direction on the other wing. This is an important feature since if the model were parameter
dependent we could transmit messages at superluminal speeds.

Parameter independence can be stated as follows:

P

(
lim

ω1
σ →∞

〈n1 · S1〉σ = + 1
2

∣∣∣F ξ
σi
; n1, n2

)
= P

(
lim

ω1
σ →∞

〈n1 · S1〉σ = + 1
2

∣∣∣F ξ
σi
; n1

)
, (58)

and similarly for 1 ↔ 2. In order to prove this relation we define projection operators P +
na

by

P +
na

∣∣ + 1
2

〉
na

= ∣∣ + 1
2

〉
na

; P +
na

∣∣ − 1
2

〉
na

= 0. (59)

In the limit that ω1
σ → ∞ we can write

P
( 〈n1 · S1〉σ = + 1

2

∣∣F ξ
σi
; n1, n2

) = EP
[〈
P +

n1

〉
σ

∣∣F ξ
σi
; n1, n2

]
= EQ

[ 〈ψ(σ)|P +
n1

|ψ(σ)〉∣∣F ξ
σi
; n1, n2

]
= 1

2 EQ
[

cos2
(

θ
2

)
e2λξ 1

σ −2λ2ω1
σ e−2λξ 2

σ −2λ2ω2
σ

∣∣∣F ξ
σi
; n1, n2

]
+ 1

2 EQ
[

sin2 (
θ
2

)
e2λξ 1

σ −2λ2ω1
σ e2λξ 2

σ −2λ2ω2
σ

∣∣∣F ξ
σi
; n1, n2

]
= 1

2 cos2 (
θ
2

)
+ 1

2 sin2 (
θ
2

)
= 1

2 . (60)

The probability of a given outcome for particle 1 is independent of n2 as required.

7. The free will theorem

The free will theorem of Conway and Kochen [24, 25] asserts that if an experimenter is free
to make decisions about which directions to orient their apparatus in a spin measurement,
then the response of the spin particle cannot be a function of information content in the part
of the universe that is earlier than the response itself. The conclusion of Conway and Kochen
is that this rules out the possibility of being able to formulate a relativistic model of dynamical
state reduction. It is claimed that a classical stochastic process which dictates a definite spin
measurement outcome must be considered to be information as defined within the theorem.
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The theorem then states that the particle’s response cannot be determined by this classical
information, undermining the construction of dynamical models of state reduction. We do not
reproduce the proof of the theorem here (it can be found in [24, 25]). In order to understand
that the conclusion of Conway and Kochen is inappropriate it will suffice to analyse the three
axioms of the free will theorem with reference to the model outlined in this paper.

The first axiom SPIN specifies the existence of a spin-1 particle for which measurements
of the squared components of spin performed in three orthogonal directions will always yield
the results 1, 0, 1 in some order. The second axiom TWIN asserts that it is possible to form an
entangled pair of spin-1 particles in a combined singlet state such that if measurements of the
components of squared spin were performed in the same direction for each particle they would
yield identical results. These two axioms follow directly from the quantum mechanics of spin
particles. A situation is considered where experimenters at spacelike separated locations D1

and D2 can each choose the orthogonal set of directions in which to measure the components
of squared spin for each particle. (The proof of the free will theorem makes use of the Peres
configuration of 33 directions for which it can be shown that it is impossible to find a function
on the set of directions with the property that its value for any orthogonal set of directions is
always 1, 0, 1 in some order.) Although we have considered a different spin system in this
paper, the similarities between the experimental set-ups allow us to evaluate the applicability
of the free will theorem to dynamical state reduction.

The third axiom MIN (in the latest version of the proof [25]) states that the particle
response at Rn1 (using our notation where it is understood that the choice of spin measurement
direction n1 corresponds to an orthogonal triple of directions) is independent of the choice
of measurement direction at D2 and similarly that the particle response at Rn2 is independent
of the choice of measurement direction at D1. Information is defined in the context of MIN
in such a way that any information which influences the measurement outcome at Rn1 is
independent of n2 and any information which influences the measurement outcome at Rn2 is
independent of n1. We can immediately see that this definition of information does not apply
to the classical stochastic processes ξa

σ considered in our model. As highlighted above, ξa
σ

can be expressed in terms of a random variable sa whose value corresponds to the eventual
spin measurement outcome, and a physical Brownian motion process Ba

σ which acts as a noise
term, obscuring the value of sa . The realized value of sa indeed depends on the choice of
measurement direction at the opposite wing of the experiment in the way shown in section 6.
Since the process ξa

σ influences the measurement outcome in a way which depends critically
on the realized value of sa , it does not satisfy the definition of MIN information. Furthermore,
there is no reason why the mechanism of state reduction outlined in this paper cannot be
applied to any spin system including the TWIN SPIN system used to prove the free will
theorem.

More generally we are able to see that the MIN axiom need not be satisfied whilst still
maintaining independence from any specific inertial frame. Viewing state evolution in the
Tomonaga picture we must choose a foliation of spacetime to provide a framework for a
consistent narrative of the state evolution. Covariance enters with the fact that all choices
of foliation are equivalent; the state can be defined on any spacelike hypersurface. For a
foliation where Rn1 happens before D2, the state will collapse across the entire hypersurface
as it crosses Rn1 , to a new state consistent with the isospin measurement direction n1. In this
way, the response of particle 1 is independent of the choice of measurement direction at D2

(which happens later in the evolution), but the response of particle 2 depends (via the collapsed
state) on the random variable θ . The opposite interpretation can be made for a foliation where
Rn2 is before D1. Thus the MIN axiom should read that either the particle response at Rn2 is
independent of the choice of measurement direction at D1 or the particle response at Rn1 is
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independent of the choice of measurement direction at D2, the difference being a matter of
interpretation. With this modification the proof of the free will theorem no longer holds.

We stress that the choice of spacetime foliation is analogous to an arbitrary gauge choice.
It allows us to form a global covariant picture of state evolution without reference to any
individual observer’s frame.

8. Conclusions

We have argued that the principles of quantum mechanics are in need of modification if we hope
to find a unified description of micro and macro behaviour. We have seen that alternatives to
quantum dynamics can feasibly be constructed despite the apparent invulnerability of standard
quantum theory when faced with experimental evidence. It may even be possible to test new
theories against standard quantum theory in the near future [31, 32].

We have demonstrated a continuous state reduction dynamics describing the measurement
of two spacelike separated spin particles in an EPR experiment. The correlation between
measured outcomes for the two particles, particularly when the experimenters are free to choose
the orientations of their spin measurements, offers an interesting challenge for dynamical
models of state reduction. We have seen that the use of the physical probability measure
induces a corresponding correlation between the stochastic processes to which the particle
states are coupled. State evolution is covariantly described using the Tomonaga picture with
no dependence on any chosen frame and no possibility for superluminal communication. The
results of measurements agree with standard quantum theory, in particular for the purpose of
performing a test of Bell inequalities for the system.

The value of this model is to show that the state reduction process can indeed be described
by a relativistically invariant stochastic dynamics (contrary to the claims of Conway and
Kochen). We have shown how to solve the dynamical equations and this has led to new insight
into the structure of the filtration. In the physical measure, the covariantly defined stochastic
processes are seen to be constructed from a random variable which relates directly to the
measurement outcome and a noise process which obscures the random variable, making it
inaccessible from the point of view of the state dynamics. This allows us to reinterpret the
problem of solving the stochastic equations of motion as a nonlinear filtering problem whereby
the aim is to form a best estimate of the hidden random variable based only on information
contained in the observable processes. It is hoped that these insights might help to indicate
ways in which we might tackle state reduction dynamics in relativistic quantum field systems.
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